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Abstract 

Fully exploiting the Lie group that characterizes the underlying symmetry of general 
relativity theory, Einstein's tensor formalism factorizes, yielding a generalized (16- 
component) quaternion field formalism. The associated generalized geodesic equation, 
taken as the equation of motion of a star, predicts the Hubble law from one approxima- 
tion for the generally covariant equations of motion, and the spiral structure of galaxies 
from another approximation. These results depend on the imposition of appropriate 
boundary conditions. The Hubble law follows when the boundary conditions derive from 
the oscillating model cosmology, and not from the other cosmological models. The spiral 
structures of the galaxies follow from the same boundary conditions, but  with a different 
time scale than for the whole universe. The solutions that imply the spiral motion are 
Fresnel integrals. These predict the star's motion to be along the "Cornu Spiral." The 
part of this spiral in the first quadrant is the imploding phase of the galaxy, correspond- 
ing to a motion with continually decreasing radii, approaching the galactic center as time 
increases. The part of the "Cornu Spiral" in the third quadrant is the exploding phase, 
corresponding to continually increasing radii, as the star moves out from the hub. The 
spatial origin in the coordinate system of this curve is the inflection point, where the 
explosion changes to implosion. The two- (or many-) armed spiral galaxies are explained 
here in terms of two (or many) distinct explosions occurring at displaced times, in the 
domain of the rotating, planar galaxy. 

1. Introduction 

The t h e o r y  o f  general  re la t iv i ty  is based  o n  a t ac i t  a s s u m p t i o n  t h a t  there  
exis ts  an u n d e r l y i n g  o rde r  for  all o f  the  phys ica l  m a n i f e s t a t i o n s  o f  the  un ive r se -  
f rom the  e l e m e n t a r y  par t ic le  d o m a i n  to  the  cosmologica l  d o m a i n  o f  the  en t i re  
universe .  The  s ta r t ing  hypothes is - the  principle o f  relativity-asserts t h a t  this  
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order, as expressed in "laws of nature," must be objective. This implies that 
the laws of nature, as expressed in terms of the space-time coordinates of 
frames of reference that are in arbitrary sorts of relative motion, must be in 
one-to-one correspondence• 

There is an implication in the assertion of the principle of  relativity that 
rejects the classical view of the space and time coordinates as "things-in- 
themselves." They are rather interpreted in the theory of relativity as not more 
than language elements, whose only purpose is to facilitate an expression of 
the laws of nature. 

Einstein's theory of general relativity is based on the idea that the logic of 
tile space-time language is indeed not arbitrary, but it is rather a representa- 
tion of matter. This is in terms of the mutual interactions of all of the matter 
content of a closed system On principle)• The logic of  the language that 
characterizes the space-time, analogous to the syntax of ordinary language 
structure, is made up of two parts• The first logically relates the elements of 
the continuum of points o f  space-time, in the sense of geometry, that is, in 
terms of metric relations, relations of congruence, parallefism, and so on. The 
second part of the logic of space-time is that which underlies the relations of 
the numbers of a sequence, that are used to identify, combine, and enumerate 
the points of  the space-time. This logic is in the sense of their algebra. The 
complete logic of  space-time then requires a specification of the geometry and 
algebra and the expression of this total logical system as a representation of 
matter. 

While Einstein concentrated in his writings on general relativity theory on 
the relation of geometry to physics, the relation of algebra to physics was pro- 
pounded a century earlier by William Rowan Hamilton. In 1853, in his "Preface 
to Lectures on Quaternions" (Halberstam and Ingrain, 1967), Hamilton made 
the following remarks: 

It early appeared to me • • • to regard ALGEBRA as being no mere 
Art, nor Language, nor primarily as Science of Quantity; but rather 
as the Science of Order in Progression. It was, however, a part of this 
conception, that the progression here spoken of was understood to be 
continuous and unidimensional: extending indefinitely forward and 
backward, but not in any lateral direction. And although the successive 
states of such a progression might (no doubt) be represented by points 
upon a line, yet I thought that their simple successiveness was better 
conceived by comparing them with moments o f  time, divested, how- 
ever, of all reference to cause and effect; so that the "time" here con- 
sidered might be said to be abstract, ideal, or pure, like that "space" 
which is the object of geometry. In this manner I was led, many years 
ago, to regard Algebra as the SCIENCE OF PURE TIME. 
• • • And with respect to anything unusual in the interpretations 
thus proposed, • • • it is my wish to be understood as not at all insist- 
ing on them as necessary, but merely proposing them as consistent 
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among themselves, and preparatory to the study of the quatemions, 
in at least one aspect of the latter. 

With the later appearance of the theory of general relativity, in the twenti- 
eth century, it is important, in retrospect, to take notice of Hamilton's comment 
that the "time" he refers to is not the perceptual reaction that one identifies 
with the duration of a physical system - that is, it is not directly identified 
with cause-effect relations. The "time" he refers to, as expressed in terms of 
his Algebra, is rather the "abstract, ideal, or pure" relational concept. This 
"time" seems to me to correspond closely with the time component of 
Einstein's abstract space-time, as a relative language construct to express 
objective laws of  nature. The fusion of Hamilton's discoveries about the quat- 
emion algebra and his interpretation of this in terms of an abstract time, with 
Einstein's relativization of this "time" with space, in the abstract "space- 
time" of general relativity theory, then leads in a natural way to a generaliza- 
tion of the mathematical representation of the theory of general relativity. This, 
in turn, leads to additional physical predictions from the formalism of the 
theory. 

Such a fusion of algebra with geometry in the expression of general rela- 
tivity theory in its irreducible form, then, indeed, leads to the necessity (that 
Hamilton had not yet seen at his stage!) for the use of the quaternion algebra 
in this expression of laws of nature. This conclusion, to be discussed in Sec. 2, 
follows from the requirement that the mathematical expression of the theory 
should transform as an irreducible representation of the underlying symmetry 
group of general relativity theory. 

Since the initial successes of Einstein's theory of general relativity, it has 
been interpreted by some scholars as a generalized theory of the gravitational 
force. This is in the sense of superseding Newton's theory of universal gravi- 
tation by reproducing all of the successful classical results, as well as making 
successful predictions of gravitational phenomena that are not predicted by 
Newton's theory. In terms of its conceptual structure, the theory of general 
relativity provides a fundamental explanation for the specific inverse-square 
law of Newton's theory. This is derived from asymptotic features of the 
solutions of the field equations of Einstein's theory, replacing Newton's 
action-at-a-distance concept, where the mutual interactions of matter propa- 
gate at a finite speed. 

The primary success of Einstein's field theory has been the explanation of 
the observed features of the gravitational force in the domain of the solar 
system, as well as the explanation of terrestrial gravitational effects. Still, the 
theory of general relativity can hardly yet claim any great success in explaining 
the astronomical features of the night sky, beyond our solar system, such as 
the observed properties of the nearby galaxies and our own galaxy, theMilky 
Way. That is to say, if the theory is as general as it is purported to be, it should 
predict the features associated with the stars, galaxies, and clusters of galaxies, 
such as their distributions in space and their motions, relative to our position 
as observers in the universe. 
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Einstein himself did not interpret his field theory as only a theory of the 
gravitational force. Rather, he looked upon his tensor field equations that had 
already successfully explained some gravitational phenomena as a preliminary 
form for a field formalism that should represent a general theory of matter. He 
had hoped that when properly generalized, the formalism of general relativity 
theory would include the electromagnetic manifestations as well as the other 
features of interacting matter in the microscopic domain of elementary particle 
physics, where (conceptually) the oppositely oriented quantum theory has thus 
far been evoked to explain the data of atomic and elementary particle physics. 
Although, historically, Einstein first discovered the theory of special relativity, 
and then proceeded to the case of general relativity, if one should now accept 
Einstein's interpretation of his theory as a general theory of matter, then the 
case of special relativity should not be considered as more than a special asymp- 
totic limit, where matter is sufficiently rarefied to replace an actual curved 
space-time with its (fiat) tangent space-time at each point of observation. It is 
clear that this approximation has had a great deal of success in providing at 
least partial explanations for the physical manifestations of matter in the 
microscopic domain, snch as the additional physical implications of imposing 
special relativistic covariance on the quantum mechanical equations (e.g., the 
"spin" magnetic moment of an electron), the relativistic Doppler effects, the 
energy-mass relation, and so on. 

If Einstein was right about the interpretation of his field theory as a general 
theory of matter, then it must follow that (1) the same generally covariant 
formalism that correctly predicts the features of matter in the microscopic 
domain of elementary particle physics should also be applicable as a general 
mathematical representation for the cosmological domain, and (2) the equa- 
tions of motion of the general field theory should correctly predict the details 
of the astromoners' observations of the motions of the stars. 

In regard to the former requirement, I have shown in earlier publications 
(Sachs, 1967, 1968, 1970a) that the usual symmetric second rank tensor rep- 
resentation of Einstein's general relativity theory is indeed not its most general 
mathematical representation. When one proceeds to the most general form of 
the theory, according to the algebraic structure of the irreducible representa- 
tions of the underlying symmetry group (the "Einstein group"), one is led to 
a factorization of the second rank tensor form, where the basic metrical field 
now becomes a (16-component) four-vector field, in which each of the vector 
components obeys the algebraic properties of quaternions. The equations that 
these field variables solve are a set of 16 relations at each space-time point, 
rather than the 10 relations of the conventional tensor form of the theory. In 
Sec. 2 1 will review the mathematical derivation and structure of the quaternion 
representation of general relativity theory. In previous publications (Sachs, 1971, 
1972a) I have applied this quaternion field representation (which is equivalent 
to a second rank spinor reprsentation of a special type) to the elementary par- 
ticle domain. It was found that the formalism could be structured to asymp- 
toticaUy approach the formalism of ordinary quantum mechanics, in the limits 
as the parameters relating to energy-momentum transfer between interacting 
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components of a system of matter become sufficiently small. Also, explicit 
field relationships were found relating to the inertial masses of elementary 
particles. Within the framework of this theory, the masses of the electron and 
the rouen were derived as the members of a mass doublet (Sachs, 1972b), and 
the rouen lifetime was determined within this theory (Sachs, 1972c). 

In this paper, attention will be given to the second requirement discussed 
above, where the formalism of the general quaternion representation of the 
theory is applied to determine the motions of the stars. Here one would expect 
that if the theory is to be successful, the equation of motion of a single star, as 
a "test body" subject to the influence of the matter of  the rest of  the universe 
(in principle), is the geodesic equation. According to general relativity theory, 
the affine connection terms in this equation are the geometrical representation 
for the rest of the matter of the universe that causes this star to move in the 
way that it does. 

What are the explicit facts that we now know about the motions of the 
~tars that should be predicted by a correct equation of motion? The first observa- 
tional fact, that most contemporary astronomers accept as conclusive, is the 
Hubble law-the assertion of a linear relation between the speed of a star and 
its distance from an observer, such as the astronomer here on Earth (Sandage, 
1972a). There has been some recent controversy on the possibility of a break- 
down of this linear relation for the quasars-the most distantly observed stellar 
objects (Sandage, 1972b). The latter anomalous results have led some astron- 
omers to speculate that the stars observed near the horizon of the observable 
universe are in fact slowing down, and that eventually they will stop, turn 
around and start to move inward in an imploding phase. This implies to these 
astronomers that perhaps a more valid cosmology than the single big bang 
model would be an oscillating universe (with periodic implosion and explosion 
for all of the mass of the universe). 

I will show in Sec. 3 that starting with the generalized quaternion version of 
the geodesic equation, and imposing the boundary conditions of a harmonically 
oscillating universe, the Hubble law follows from the dynamical solutions for 
this equation of motion. The "field" that plays the role of the "Hubble con- 
stant" in this derivation relates to a term in the geodesic equation implied by 
the quaternion representation of general relativity theory that does not appear 
in the conventional expression of the geodesic equation. It is also indicated in 
the explicit form of the "Hubble constant", so derived, how its mathematical 
deviation from constancy could arise, should such deviation for the motions 
of the quasars be proven as a conclusive experimental fact. 

At this point in the discussion, it should be emphasized that while other 
well known cosmological models have proven to be successful in incorporating 
the Hubble law, none of these models have actually derived this type of motion 
(that is claimed to be an experimental fact) from an equation of motion. Rather, 
the procedure had been to set up a metric tensor solution with a particular 
spatial symmetry and time dependence, specified beforehand so as to incorpor- 
ate this law. From the view of the theory of general relativity, one of the 
troubles with this method has been the effect of sacrificing the general covari- 



120 MENDEL SACHS 

ance of the theory-as it happens, for example, in the emergence of a global 
time that is the same for all observers (a "global, absolute time") in the 
Robertson-Walker metric-to yield the Hubble law, (Adler et al., 1965). But 
it seems to me that the breakdown of general covariance in the imposed solu- 
tion (that satisfies an altered set of field equations in order to match this solu- 
tion) does not serve as a bona fide test of the theory of general relativity, 
although it might represent an adequate approximation for an actually covari- 
ant solution of general relativity theory. 

With the same equations of motion and boundary conditions that predict 
the Hubble law from the quaternion formalism, another mathematical approxi- 
mation applied to the relatively infinitesimal domain, associated with a single 
galaxy rather than the entire universe, predicts a spiral motion for the star, 
moving toward the center of the spiral as time progresses in the imploding 
phase. The implication here is that the oldest stars of spiral galaxies, such as the 
redgiants, should be found near the galactic center. The observed spiral struc- 
ture of some of the galaxies, if explained in this way, is then a superposition 
of spiral motions of different stars, subject to imploding and exploding cycles 
within the domain of stellar matter of the observed galaxy. The mathematical 
solution that predicts the spiral motion from the geodesic equation is the 
Fresnel integral-gAving the Cornu spiral path. 

2. Review of  the Quaternion Representation o f  General Relativity Theory 

The theory of general relativity is based, axiomatically, on the principle of  
relativity-the assertion that the laws of nature must be totally objective. That 
is to say, this principle asserts that the laws of nature must be independent of the 
frame of reference from which they are expressed. If the frame of reference is 
represented in terms of a language of space and time coordinates, then there must 
be a unique set of transformations from the space-time coordinates of one 
reference frame to any other that would preserve the forms of the laws of 
nature. The starting assumption about these transformations, 

xa ~ xa ' ( x ° , x l , x2 , x  3) 

which distinguish one reference frame from another, is that they are continuous. 
Assuming further, that these transformations are analytic, the necessary and 
sufficient conditions are provided for the field equations of the theory to in- 
corporate conservation laws in the local limit. If we take the latter incorpora- 
tion to be a physical requirement of the theory, it follows that the laws of 
nature, generally, must be in the form of field equations whose solutions are 
analytic functions of the underlying space-time coordinates, and whose covari- 
ance is with respect to an underlying Lie group. 

The number of essential parameters that characterizes this Lie group is the 
number of independent transformations (~xOt'/~x ~) at each space-time point. 
This is generally equal to 16 for a nonlinear space-time. Thus, the underlying 
symmetry group of general relativity theory is a 16-parameter Lie group-the 
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"Einstein group." It  was discovered by Einstein that laws of nature are covari- 
ant with respect to the same set of space-time coordinate transformations that 
leave invariant the squared differential increment of a Riemannian space-time, 

ds 2 = g ~ ( x )  d x  ~ dx  e (2.1) 

The physical reason for imposing the coordinate-dependent relation, g,~¢(x), 
between the points of space-time was Einstein's contention that the geometry 
of space-time is not more than a representation of the matter content of the 
physical system. Thus if the basic representation of matter is in terms of a 
coordinate-dependent field, then the geometric relations between the points 
of space-time must, correspondingly, be a continuously variable field. The 
next step was then to find the explicit relations between the matter fields, on 
the one hand, and the geometrical field on the other. 

Einstein's tensor field equations, 

Ga~ = R~¢  - { g c ~ R  = KTc~ (2.2) 

were found to relate the matter content of a physical system, represented in 
terms of the generally covarian~ tensor, T ~  (that is the global extension of the 
energy-momentum tensor that solves the local conservation laws) to the metric 
tensor field, g ~ ,  that is involved in the nonlinear differential form Gc~ on the 
left-hand side of these field equations. Einstein's field equations transform 
covariantly in a Riemannian space-time as a second rank symmetric tensor rep- 
resentation of the Einstein group. This representation corresponds to the speci- 
fication of 10 independent relations at each space-time point. But the Einstein 
group is a 16-parameter Lie group-implying that a full exploitation of such a 
symmetry must entail 16 relations at each space-time point. It must then be 
concluded that Einstein's field equations (2.2) are not the maximally general 
representation of general relativity theory (Sachs, 1970b). 

The reason that the field equations (2.2) are not the most general represen- 
tation of the theory is that in addition to the cont inuous  coordinate trans- 
formations that def ine general covariance within this theory-because the 
relative "motion" is defined to be a continuous entity-Einstein's equations 
(2.2) are also covariant with respect to reflections in space and time. One must 
then remove the reflection symmetry elements in order to yield the most 
general representation of the theory, in accordance with the irreducible represen- 
tations of the Einstein group. When this is done, it is found that the four- 
dimensional real representations of the transformations that leave ds 2 [Eq. 
(2.1)] invariant, which previously included reflections in space-time, are now 
decomposed into the direct sum of two two-dimensional complex, Hermitian 
representations (Einstein and Mayer, 1932). These have the algebraic properties 
of a quaternion number field. 

The implication of this result in general relativity theory is that the quad- 
ratic real number form (2.1) for ds 2 should factorize into a product of a 
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quaternion form and its conjugate. Thus, I have investigated the following fac- 
torization (Sachs, 1967): 

ds = qa dx~ 

ds 2 = g~# dx  ~ dx  ~ (2.3) 
d ~ = ~  dx ~ 

The metrical field, q~(x), is geometrically a four-vector in a Riemannian space- 
time. However, each of the four components of this vector is, algebraically, a 
quaternion. Thus, qa(x )  is a 16-component field, and the factorized form ds 
for the invariant metric of the Riemannian space-time is, algebraically, a quat- 
ernion, rather than a real number. This is a generalization of the usual represen- 
tation of the invariant metric of the Riemannian manifold since ds must now 
be specified by four real numbers at each space-time point, rather than the 
single real number, (gc,~ dx  '~ dx~) 1/2, according to the usual formulation. 

This generalization is analogous to the analytic continuation of a real 
number metric invariant into the complex plane, if one were to apply complex 
function analysis to this formulation. In the latter case, the single parameter 
description of the invariant metric would be extended to a two-parameter 
description. That is, to define a geodesic path in the complex plane, rather 
than along the real axis, one must specify two real numbers (the real and imagi- 
nary parts of s) at each point of this path. Extending further, from the complex 
space of pairs to the quaternion space of quadruples, as in the present analysis, 
it is the four-parameter quaternion description of the invariant metric that is 
indicated for the complete specification of a geodesic path, according to the 
structure of the irreducible representations of the Lie group that underlies the 
symmetry of general relativity theory. 

Since ds obeys the algebraic properties of a quaternion number field, 
rather than a real number field, its simplest representation is in terms of a two- 
dimensional Hermitian matrix, 

(ds)ij = (ds)  

It also follows from this definition that the "path integral" in a Riemannian 
space-time must similarly be represented, most simply, by a two-dimensional 
Hermitian matrix, 

qc~ d x  c~ = qa dx  c~ 

where the end points of the integration, sl,  s2, denote the quadruples of 
numbers that define the limits of the path integral. In contrast with the path 
integral of the ordinary Riemannian space-time, which is parametrized by a 
single real variable, this path integral is parametrized by four real number vari- 
ables. That is, at each space-time point x, one must use four real numbers in 
order to proceed in the sequence of points (that define the path) that is ds 
further along the path. This is indeed an important consequence of the 
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generalization from the real number invariant, ds = +- (ga6 dxa dxl3) 1/2, to the 
quaternion invariant, ds = qa dxa. 

It is important to emphasize that the (four-parameter) quaternion differen- 
tial invariant, ds, or the quaternion path integral invariant, Ss~ ds, are not 
directly observable quantities in the transcription of this geometrical formula- 
tion into a physical problem, such as the prediction of the path of a moving 
"test body." But neither are the corresponding quantities of the (single- 
parameter) conventional geometrical representation of a line element in a 
Riemannian space-time directly observable physical quantities. The observables, 
relating to the motion of a "test body," come from the equations o f  motion, 
which are taken in general relativity theory to be the geodesic equation. 

The extra predictions from this generalized quaternion representation of the 
geometry of space-time in general relativity, show up in ( t )  the features of the 
space-time resulting from its "torsion," and (2) the dependence of the quater- 
nion variables on the space-time-dependent variables in phase factors. In this 
paper, only the second of these new aspects of the formalism will be exploited. 
A time-dependent phase factor appears in the quaternion metrical fields, when 
describing a "stationary state." This feature, in turn, leads to an extra term in 
the geodesic equation for the moving body, when it is expressed in terms of the 
"time parameter" rather than the invariant s (Sachs, 1970a). This result is 
entirely analogous to the time-dependent phase factor that appears in the 
Schr6dinger or Dirac solutions, when describing an electron in a stationary 
state. The extra term that appears in the wave equation in either of the latter 
theories depends linearly on the electron's energy'. 

In Sec. 3, the torsional properties of the space-time are projected out by 
taking the trace of the quaternion form of the geodesic equation. Nevertheless, 
the torsion is always present in the general form of the equations of motion, 
and it does imply physical predictions whose explicit forms are not investi- 
gated in this paper. 

To express the geodesic equation in its quaternion form, quaternion deriva- 
tives d/ds must be defined. This was done in a previous article (Sachs, 1970a). 
The conventional limiting procedure ted to the definition 

dlds = q~l dldx,~ (2.4) 

where the inverse quaternion, q2l ,  defined at the space-time point where 
d/dx ~ is applied, is algebraically equal to qo~/qo~qo~ (no sum is implied here). 
The denominator, ~ q ~  is the norm of the quaternion q~. 

We see, then, that the quaternion calculus in differential geometry entails 
the form (2.4) for the quaternion parametric derivative, rather than the real 
number form, d/ds = d/(gc,~ dx ~ dx~) v2 of the conventional calculus. An 
important feature of the derivatives of the type (2.4), as compared with the 
ordinary (real number) derivatives, or the derivatives in a com!51ex plane, is 
that the result of two quaternion differentiations depends generally on their 
order of application, that is, they are noncommutative. 

The norm of the quaternion invariant ds is the real number 

I ds dsl = ~ lq~ lB  + q~7t,~ I dx °~ dx ~ (2.3') 
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Thus, the correspondence between the tensor and the quaternion metrical 
fields is the following: 

gep ~ ½(qeq~ + qOgla) (2.5) 

The quaternion metrical field itself can be expressed in its two-dimensional 
Hermitian form as follows: 

qc~(X) = at3 va~(x) (2.6) 

where the quaternion basis elements, og = (Oo; ok), are the unit two-dimensional 
matrix and the three Pauli matrices. These play the role of Hamilton's (1 ;i, j, k) 
basis elements of a quaternion. With this algebraic structure, the 16 field 
components, va ~, are defined with norms as follows: VogVog = 1, vk6vtc# = 
- a  (k = 1, 2, 3). 

The 16-component field, va ~, relates to the tetrad field that has been investi- 
gated by other authors in studies in general relativity. It is important to note, 
however, that the present formulation is not equivalent to the standard tetrad 
formulation, because the quaternion formalism entails the metric field in terms 
of a whole quaternion, with its added restraints such as noncommutability 
under multiplication, hermiticity, and so on. This is analogous to the considera- 
tion of the solutions of Dirac's electron equation as whole spinor variables 
(rather than their separate components), as the fundamental variables. 

It also might be added here, parenthetically, that the factorization (2.3) 
follows for precisely the same reason that the Klein-Gordon equation in special 
relativity theory factorizes into a conjugated pair of two-component spinor 
field equations in Dirac's electron theory. It is because of the removal of the 
reflection symmetry elements from the underlying Lorentz group, yielding the 
factorization of the D'Alembertian operator 

[] .~ (~0)2 __V2 _+ [ ~ O~/~ 
/ 

The basis functions of the factorized (quaternion) differential operators above 
are the two-component spinor variables for Dirac's relativistic electron. Similarly, 
the removal of the reflection symmetry elements from the symmetry group of 
general relativity theory (the "Einstein group") leads to the quatemion factor- 
ization (2.3). 

The quaternion representation of the theory of general relativity yields a 
nonredundant formulation, prescribing t 6 (differential) equations and 16 
unknowns at each space-time point. Starting from the factorization (2.3), I 
have derived all of the tensors of a Riemannian manifold in terms of the quater- 
nion variables and their conjugates, as the basic metric field components rather 
than the metric tensor gap (Sachs, 1967). From a variational calculation, using 
the Palatini technique, and treating the counterpart of the Riemann scalar 
curvature R(q,~, ~,~) as the part of the Lagrangian density that yields the 
explicit behavior of the metric field, the equations in qa were found to take 
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the following form: 

¼(Kc~¢q ~ + qt3Ke,~) + Rqe, = • J ~  (2.7) 

R = ¼Tr (Keo(qt~O ~ - qC~q~) + H.c.) is the explicit form that corresponds to the 
scalar curvature field of a Riemannian manifold, K~¢ is the spin curvature," de- 
fined as follows in terms of the second covariant derivatives of a two-component 
spinor field variable 77: 

~;~;~ - ~;~;~ = K ~ r ?  -= ( ~ g 2 ~  + ~ - ~ g 2 ~  - gZ~gZ~)r~ 

and g2~ is the "spin affine connection," defined in terms of the covariant 
derivative of a spinor field, 

r/;c~ = 8c~r7 + g2ar/ 

The vanishing of the covariant derivatives of the quaternion variables q~ 
(taking account of their geometrical four-vector transformation property and 
their algebraic property as a second rank spinor of the form 77 @ r/*) then yields 

In the quatemion field equations (2.7), the matter source field, ~-a, follows 
from the variation of the matter Lagran~an density with respect to the quater- 
nion field variables. The latter is the part of the Lagrangian whose variation 
with respect to the field variables other than the quaternion metrical fields 
yields the generally covariant particle wave equations, and the other (non- 
metrical) field equations. 

The quaternion field equations (2.7) are the 16 independent relations at 
each space-time point x that underlie the explicit features of the metric space. 
They are fully covafiant according to the underlying symmetry group of 
general relativity theory, and they transform according to the lowest-dimen- 
sional irreducible representations of this group. Thus, this is the most general 
representation of the theory. 

When the quaternion field equations (2.7) are iterated with a conjugated 
quaternion solution, q0, the reconstructed equations then transform geometri- 
cally as a second-rank tensor representation of the Einstein group. While this 
is not a symmetric or an antisymmetric tensor representation, it can be re- 
written as the sum of a symmetric tensor part (10 relations) and an antisym- 
metric tensor part (six relations) (Sachs, 1968). When this was done, it was 
found that the symmetric tensor part is in one-to-one correspondence with 
Einstein's field equations (2.2), in accordance with the correspondence of the 
tensors of a Riemannian space-time and particular constructions of qa, qc, and 
their derivatives, as determined earlier (Sachs, 1967). Thus, all of  the physical 
predictions of Einstein's formalism are also predicted by the quaternion 
formalism (2.7). However, because there are six extra (nonredundant) field 
equations coming out of the iterated version, there must be more physical pre- 
dictions here than are made by Einstein's field equations. 

It is significant that in the iterated form of the quaternion field equations 
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(2.7), the symmetric and antisymmetric tensor parts have opposite reflection 
properties in space-time. Where the symmetric tensor part is even under reflec- 
tions, the antisymmetric tensor part is odd. This result is, of course, as it 
should be, since the quaternion field equations from which we start are neither 
even nor odd with respect to reflections, so that their expression in terms of 
the sum of an even part and an odd part is (in totality) neither even nor odd. 
Because of the fact that the antisymmetric tensor part of this sum is odd 
under reflections in space or time, where the Maxwell field equations are 
also odd under reflections (depending on the odd field j~, as the matter source 
of the electromagnetic variables), and because the electromagnetic variables 
themselves are the components of an antisymmetric tensor field, it was found 
that after taking the covariant divergence of these antisymmetr~c tensor metric 
field equations, they then had the same mathematical structure as Maxwett's 
equations for electromagnetism. That is, they form a vector representation of 
the Einstein group in terms of field equations whose solutions are an antisym- 
metric second-rank tensor field. 

3. Astrophysical Applications o f  the Quaternion Formalism 

The primary interest in this paper is in regard to the astrophysical applica- 
tions of the generalized field equations (2.7) for general relativity. Thus, the 
electromagnetic manifestations of interacting charged matter that is incorpor- 
ated in the predictions of the field equations (2.7) will not be exploited here. 
Still, the generalized metrical field, qa, also implies a generalization of the 
gravitational forces themselves, compared with the predictions of the standard 
form of the theory of general relativity, in terms of the metric tensor field ga¢. 
The extra predictions have to do with planetary motion, as well as the motions 
of stars and other massive bodies, outside of the domain of the solar system. 
I reported in an earlier paper on the consequences of this generalization in 
planetary motion problems (Sachs, 1970a). 

It was found in the previous analysis of planetary motion, based on the 
quaternion representation of general relativity, that the extrema of the line 
integral fs~ ds yield the same functional expression for the geodesic equation 
as derived from the usual form of general relativity theory, 

d 2xCe p~ dx ~ dx ~" 
ds---T-+ ~3' ~ss dss = 0 (3.1) 

However, since the differential element ds is the quaternion qa dxa, rather 
than a real number, the left-hand side of this equation (and the zero on the 
fight) is also a quaternion, defining the derivatives, d/ds, according to Eq. (2.4). 

The generalized metrical field q~ contains more information in it than the 
standard tensor field representation gc,~, as it is a 16-component field rather 
than a 10-component field, and follows from fully exploiting the symmetry 
group of general relativity theory. As I have indicated earlier, some of this 
extra information relates to the "torsion" of space-time. These extra features 
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of space-time appear also in the geodesic equation (3.1) since, in its irreducible 
expression, this is a two-dimensional Hermitian matrix representation. That is 
to say, the general form of the geodesic equation (3.1) represents, in the quat- 
emion formalism, four independent equations: 

d2x°¢ dx~dx'rl =O (i,]=l,2 ) (3.1') 
a-Y+r   ds a '  ,i 

for each set of space-time coordinates x% 
Generally, the complete specification of the geodesic path requires the 

solution of all four of these equations. This conclusion, once again, is a mani- 
festation of the result indicated earlier, that the complete specification of the 
geodesic curve, according to the quaternion formulation of general relativity 
theory, requires four parameters, rather than the single-parameter curve of the 
usual (real number) formulation. 

Nevertheless, for the purpose of investigating the implications of the field 
equations that do not entail torsion effects, a more restricted form of the 
geodesic equation (3.1) may be used by taking the determinant of the matrix 
form of this equation. Further, by using the coordinate frame in which ds 
relates to a time measure in the frame of the object that would move along 
a geodesic, the geodesic equation further reduces to the form (Sachs, 1970a) 

5('r + F~2~2~ = _ I Q  - 1 Q  ,~,y (3.2) 

where Q = I q01 -z, the vertical bars denote the determinant, and the dot 
refers to the rate of change of the global variables with respect to the time 
coordinate of a star, as determined from a fixed frame, say that of the Earth 
observer. 

In some well known astrophysical applications, such as the predictions of 
planetary motion from the Schwarzschild solutions of Einstein's equations, 
the assumption that the metric tensor g,~ is independent of the time parameter 
works well in reproducing the data for these phenomena. Nevertheless, even in 
this case the metric field q~ could be time dependent in a phase factor, while 
g~t3 is the time independent. For the relation betweenga~ and the bilinear 
product (2.5) of quaternion and conjugate quaternion variables shows that the 
phase factors would cancel out in this form. But the quaternion variable, Q, 
that appears on the right-hand side of the geodesic equation (3.2), would still 
be nonzero. Thus, in this case, the predictions of this equation would generally 
be different from those of the standard form of the geodesic equation, where 
there is a zero on the right. One of the extra predictions that followed in this 
way from the earlier analysis (Sachs, 1970a) was a different expression for 
the angular momenta of planets, while the same result was found for the 
numerical prediction of the aperiodic contribution to Mercury's perehelion 
precession, as compared with Einstein's prediction-at least to the order of 
approximation that was used, according to the accuracy of the measurements 
compared. 
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The Hubble Law 

In the conventional treatment of  the mathematical representations for the 
Hubble law, such as that of Robertson and Walker (Adler, Bazin, and Schiffer, 
t965), conditions are imposed on the metric tensor gc~ that will lead to a 
reproduction of the linear Hubble law. With the proper choice of integration 
constants in the expression ofga¢, as a solution (of a restricted form) of 
Einstein's equations (2.2), these conditions then lead to a universal global time 
coordinate (with the tensor component got = 1 in all coordinate frames) and 
an isotropic space which depends on a time-dependent factor, exp (Ht). This 
form of the metric tensor then reproduces the Hubble law, R = HR, where R 
is taken to be the distance to a star that is moving out in the "exploding 
universe," relative to the origin of the "big bang," H is Hubble's constant; it 
appears in this derivation as a constant of  the integration. 

A difficulty with this means of describing the Hubble law, according to 
the theory of general relativity, is that it in noncovariant. It is a description 
that revives the Newtonian concept of absolute t ime-where the time 
measure, which is defined in terms of the coordinate along which the universe 
is evolving, is the same from all reference frames. A second difficulty is that 
such a form for g ~  was not in fact derived from the field equations, or from 
equations of motion. It was rather set up in accordance with symmetry con- 
siderations, as well as imposing some extra mathematical conditions that would 
ensure a form that would predict the Hubble law. Such a form for ge~ then is 
forced into the form of Einstein's field equations, at the expense of sacrificing 
the covariance of these equations. It seems to me, then, that describing the 
Hubble law in this way cannot yet claim to be a successful prediction of the 
theory of general relativity itself, even though it may be an empirically cor- 
rect description of the motions of the stars. 

As I have indicated in the Introduction, the aim in this paper is to see if 
the Hubble law, in particular-which makes a definite claim about the type of 
motion of the observed stars of the universe-can be derived from equations 
of motion of general relativity theory (even if particular mathematical approxi- 
mations must be used in carrying out such derivation) based on general 
physical considerations. 

The equation of motion for a star, as a "test body," moving throughout the 
universe under the influence of the rest of the matter of  the universe (in 
principle), will be taken to be the geodesic equation (3.2). In using this equation 
of motion, the effects of  torsion of the space-time are being ignored at this 
stage. As a first physical assumption, the velocity of  the star will be taken to 
be very small compared with the velocity of light. In this case, 2 0 = c, 2 o = 0. 
Thus, according to Eq. (3.2), 

V°~2 a2 ~ = - ½ Q -10C (3.3) 

The geodesic equation (3.2) then takes the form 

2 k = F°a~2c~2~(2t:/c)- P ~ 2 ~ 2  ~ (3.4) 

for the three spatial coordinates of the observed star, with k = 1, 2, 3. 
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A second physical assumption is that under the actual conditions where the 
observations of the motions of the stars verify the Hubble law, the effective 
"force" that acts on the star to cause its motion is time independent. It is due 
to the average background matter of the rest of the universe, which, in turn, 
varies sufficiently slowly with time to neglect this dependence. This effective 
"force," according to general relativity theory, is represented by the geometri- 
cal properties of space-time, explicitly in the form of the affine connection 
terms in the geodesic equations (3.2), (3.4). 

With the assumption, then, that the four terms P ~ 2 ~  ~ (for 3' = 0, 1,2, 3) 
are time independent in Eq. (3.4), this equation is readily integrated, yielding 
the solution 

x k = K 1  +K2 e x p ( c - l F % x a x 3 t )  + ( I ' ~ x ~ J c ~ / F ° 3 Y c ~ J c 3 ) c t  (3.5) 

where K1 and K2 are the two integration constants, to be determined from the 
boundary conditions. 

For the boundary conditions imposed on the equation of  motion (3.2), I 
will assume the validity of the oscillating universe cosmology, as referred to 
earlier in the Introduction. This is based on the model in which the presently 
exploding phase is a cycle that was preceded by, and will be succeeded by, an 
imploding cycle, continuing in periodic fashion into the indefinite past and 
future. Since the velocity of the matter in motion changes its direction from 
the imploding to the exploding phase, there is an inflection point in 2 k at the 
times of alternation between implosion and explosion. Calling t = 0 the time 
when the presently observed exploding cycle began, the boundary conditions 
imposed by this cosmological model are 

x k(0) = ~ k(0) = 0 (3.6) 

where the star's location at the beginning of this explosion phase is taken to 
be the origin of the coordinate frame. Note that the formalism is still covariant. 
and these definitions are with respect to another coordinate frame-that of the 
astronomer here on Earth. 

With the boundary conditions (3.6) in the solutions of the equations of 
motion (3.5), the two integration constants are found to be as follows: 

K1 = _ K  2 = c2 [ ( r k  :~ ~2~ 13)/(rg139~ a)~/3)210 (3.7a) 

The subscript 0 refers to the values in the bracket at the beginning of the pre- 
sent explosion cycle. With the assumption that 2 k ,~ c [which was used in 
arriving at Eq. (3.4) for the equation of motion] it follows that the integra- 
tion constants can be approximated by the form 

K1 = - K 2  = [(roko)/(r°o)2]o (3.75) 

The solution (3.5) then takes the following explicit form: 

X k k 0 2 = [ roo / ( ro  o) ] o [ 1 - exp (c-1 po¢2,~ 2 t3t) ] + ( r ~  aS ~ / r % ~  ~ Ckt 

(3.s) 
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Consider the two terms on the fight-hand side of Eq. (3.8) separately. The 
coefficient in front of the first term, 

k 0 2 -  - -  k [Foo/(Foo) ]o = R  (3.9) 

which has the dimension of length, is a function of the spatial coordinates. 
When describing the furthermost visible stars, this term might be interpreted 
as the "radius of the universe." When this function is large and spacelike, com- 
pared with the separation, ct,  the second term on the right-hand side of Eq. 
(3.8) may be ignored in comparison with the first. This approximation corre- 
sponds to the assumption that the distance from the observer to the star is 
large in comparison with the distance traveled by fight from one time that the 
astronomer observes this star to the next. 

With this assumption, that the second term on the right-hand side of Eq. 
(3.8) can be neglected compared with the first, the solution predicts that the 
velocity of the star in any of the three spatial directions, x k, is 

2 k = (c - l r°~2c~2t~) (x  k - R k)  (3.10) 

Since R k cancels in the comparison of two velocities at any two times, Eq. 
(3.10) then predicts the Hubble law. This law, of course, is verified experi- 
mentally by measuring a linear relation between the cosmological red shift in 
the light emitted by the distant stars and the distance from these stars, and 
then identifying this red shift with the velocity of the star that is in accord- 
ance with the Doppler effect (Tolman, 1934; Sandage, 1972a, b). 

It is significant in this analysis that the derivation of the Hubble law is 
dependent on the appearance of the extra term P ° ~ 2 a 2 ~ ( 2 k / c )  in the geodesic 
equation for the star's coordinates xk -a  te'rm that does not appear in the 
conventional expression of the geodesic equation in the tensor theory. This 
extra term corresponds, in the quaternion notation, to the following form 
for "Hubble's constant": 

H = c - l r O  ;.o~[~_ 1_~-1~ 
I C ~ " v  "~ - - - - 2 ~  ~ (3.11) 

The Q field is defined in Eq. (3.2) in terms of the time component qo of the 
quaternion metrical field solution q~ of the factorized equations (2.7) for 
general relativity. 

With this definition of"Hubbte's constant," it is time independent (within 
the approximations used in this analysis), but it is generally dependent on the 
spatial coordinates of the star, relative to the location of the initial motion 
(i.e., when the "big bang" occurred)-from the view of the astronomer here on 
Earth. That such spatial variation has never been conclusively verified in obser- 
vations means that the magnitude of H, over the distances traversed by the 
stars during the time that our astronomers have been recording the motions 
of the stars, is negligibly small in comparison with the change in H since the 
time that the "big bang" happened, in this cycle. Still, it is possible that 
recently observed deviations from the linear Hubble law in the motions of 
quasars (Sandage, 1972b), is indeed an experimental observation of the devia- 
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tion of H from constancy-though this possibility must not be taken at this 
time as more than conjectural, since the data relating to the quasars are still 
quite controversial among astronomers. 

4. The Spiral Structures of Galaxies 

If the solution (3.8) for the equation of motion of a star is generally valid 
under the conditions that were imposed in arriving at this solution from the 
general form (3.2) of the geodesic equation, then it should apply toward the 
explanation of other stellar phenomena in the night sky that are in addition 
to the Hubble law. One such phenomenon that still remains unaccounted for 
by astrophysicists is the spiral, two-dimensional structure of many of the 
galaxies, including our own Milky Way. I am not referring in this application 
to the evolution of the matter distribution of the entire universe, as I was in 
the preceding analysis that led to the Hubble law. I am assuming, rather, that 
after the explosion (i.e., the "big bang") of  this (or any other) cycle of the 
oscillating universe, as the nuclear matter moved out, ever decreasing its den- 
sity, globules of stellar matter were formed from a rather homogeneous cosmic 
dust, leading in turn to the formation of clusters of galaxies, and subglobules 
of these were formed, leading to the formations of the galaxies themselves. 
This view is consistent with the model of the evolution of the universe that 
succeeded the "big bang," according to many of the contemporary astro- 
physicists. 

However, if one should assume that the forces involved in the latter stage, 
when the galaxies were formed, are the same types of forces that are respon- 
sible for the oscillatory dynamics of the entire universe, then it might be as- 
sumed, because of the much smaller amount of mass of the galaxy, that over 
a much smaller time scale compared with the period of  oscillation of the 
entire universe, the matter of the individual galaxies themselves would be 
successively exploding and imploding in periodic fashion. This conjecture 
is not unlike the claim in the early days of atomic physics, starting with Bohr's 
model for hydrogen-and proceeding to the modern quantum mechanical theory 
of hydrogen-that the same type of force law which is responsible for the 
attraction of two oppositely charged, macroscopic pith balls (Coulomb's law) 
should also be responsible for the electron-proton attraction. In this case, 
also, the time scales invoh, ed in the analyses of  trajectories of the respective 
macroscopic and microscopic quantities of interacting matter are different 
by large orders of magnitude. 

With this assumption about the internal dynamics of a galaxy, the same 
boundary conditions (3.6) should apply to the motion of a star within its own 
galaxy-the zero time now referring to the beginning of  an implosion of the 
galaxy. In this case, the "radius" of the system considered [Eq. (3.9)] could 
be of the same order of magnitude as the distance (et); thus, one cannot 
neglect the second term on the right-hand side of Eq. (3.8) compared with 
the first. 

In this case, however, we can consider the motion of the star-the "test 
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body"-for  time intervals that are small compared with the time it would take 
light to propagate across the entire domain of the host galaxy. Under these 
conditions, and assuming that the speed of the star is small compared with the 
speed of light, the exponential function in the solution (3.8) depends on an 
argument that is small compared with unity, i.e., 

c - l P ° ~ 2 a 2 ~ t  ~" P ° o c t  ~ c t /RG ~ 1 (4.1) 

where R G  is the order of magnitude of the dimension of the galaxy, as derived 
from the relation between the affine connection and the "force field" of matter, 
according to general relativity theory. 

With this approximation, the exponential term in (3.8) may be expanded. 
Keeping only the first two terms, the following expression for the solution of 
the geodesic equation results: 

x k = ( c t ) { r k o o / ( r O o ) 2  k o 2 o - [ roo / ( roo )  ]o>roo (4.2) 

With the general expression for the affine connection components in terms 
of the metric tensor, 

Pgfl = ½gZ'X(3egx e + 3~gxa - 3hga~) (4.3) 

and the assumption that ga~ is an analytic function of the time coordinate, 
thereby allowing the Taylor expansion, 

g~( t )  = g~t~(O) + g~(O)t + ½ ~ ( O ) t  2 + " "  (4.4) 

it follows that for small t, the spatial coordinates of the star take the following 
form: 

x k = ½akt 2 + b k t  3 (4.5) 

where 

a k = 4 R G k H G  (j3Xlo~ k -- {30lot ° )  

b k = R o k a o ( ~ o / o , o ) ( 2 ~ k / , ~  k - ~oio~o)  

t 3k = c[(g k° g:oo +gkOgoo) + 2(gkigio + gtqg]o)] o 

o~ = 2c(gkO~o 0 + 2gX/g]o) o 

s o  = (gOO~oo) ' ~o  = (gOOSe ° + gOO~oo) ° 

(4.6a) 

(4.6b) 

(4.6c) 

(4.6d) 
(4.6e) 

The radius Rc  k is defined in Eq. (3.9), and the constant HG is defined in Eq. 
(3.11), except that the geometrical variables in these equations refer here to 
the single galaxy. According to the approximations that have been used, Rc  ~ 
is equal to the ratio [ak/(a°) 2 ] o, and H a is equal to ½a °. 

According to the solution (4.5) for the coordinates of the star in the galaxy, 
its acceleration in each of the orthogonal spatial directions is 

5~ k = a k + 6 b k t  (4.7) 
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where the coefficients a k, b k are time-independent functions defined in Eq. 
(4.6). Substituting the variables ~k = 5/k _ a k, Eq. (4.7) can be expressed in 
the form 

(~-'1)2 + (~'2)2 + (~:3)2 = 36[(bl)2 + (b2)2 + (b3)2] t2 (4.8) 

The quaternion metric field qa for space-time is a four-vector field, and 
algebraically a second-rank spinor field, of the type 77 ® r~*. With the latter 
feature in the underlying metric, there is the implication of a "torsion" of 
space-time. Thus, the dynamics, associated most primitively with the quat- 
ernion field for the exploding-imploding stellar systems, implies that, in 
addition to the translatory motion acquired in the explosion, the star also gains 
angular momentum, due to an imposed torque. Thus, the entire galaxy would 
be set into rotational motion in a plane that is perpendicular to the orientation 
of the initially imposed torque during the explosion. This implies that i fx  3 is 
(defined to be) the axis of rotation, then the quaternion field equations pre- 
dict that (b I , b 2) >> b 3. Such rotational motion, which is consistent with the 
astronomical data in regard to the spiral galaxies, would then be characterized 
by the equations of motion 

(~'x)2 + (~'y)2 = A2t2  (4.9) 

where 

a 2 = 36[(bX) 2 + (bY)21 

and the indices (1, 2) are referred to here as (x, y),  denoting the plane of the 
rotational motion. 

The solutions of the equations of motion (4.9) that satisfy the boundary 
conditions (3.6) predict a spiral motion-the "Cornu spiral"-expressed expli- 
citly in terms of the Fresnel integrals: 

~x(t)  = c{fto cos[ (A/2c)r  2] dr  - t}, ~Y(t) = c fro s in[(A/Zc)r  2] dr  

(4.10) 
Thus, the total solution compatible with the boundary conditions of an 
exploding-imploding oscillatory model is 

x( t )  = f x ( t )  + laXt2 ,  y ( t )  = fY ( t )  + ½aYt 2 (4.11) 

This solution then describes a superposition of a spiral motion in a two-dimen- 
sional plane, characterized by the Fresnel integrals (4.10), and the constant 
acceleration of the galaxy as a whole, relative to the observer's frame of 
reference. The constant acceleration part of the motion follows in this analysis 
from the initial assumption that, at the beginning of an imploding phase of the 
motion, the geometrical fields that correspond to the Newtonian gravitational 
force of the classical theory are spatially constant at the early times and are 
time-independent. This is similar to the classical approximation that predicts 
a constant acceleration for a body that falls freely toward the earth near its 
surface. 
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The actual observation of the internal structure of the spiral galaxies, from 
our frame of reference, is then a view of the superposition of the spiral paths 
of the constituent stars. The appearance of different "arms" of the galaxy would 
then be due to the displacement of starting times of the motions of the differ- 
ent stars, each in turn caused to move spirally toward the hub of its rotating 
galaxy. 

According to the dynamics predicted by this analysis, as time increases the 
star then moves within the galaxy with ever decreasing radii until it reaches the 
center of the galaxy-the hub. The physical implication of this type of motion 
is that one should expect to find the older stars of a galaxy, such as the "red 
giants," closer to the hub instead of in the outer arms. The details of the shapes 
of these spirals-the "Cornu spiral"-are given in tables of Fresne] integrals 
(Jahnke-Emde-Losche, 1960). 

According to this dynamical description of the galaxy, then, as time pro- 
ceeds all of the stars of this system move in a "winding up" phase, toward the 
hub of the galaxy at its center. This motion is described by the arm of the 
Cornu spiral curve in the first quadrant of the X-Y plane. This is the implosion 
phase of the cycle. When a sufficiently great matter density has then built up 
at the hub, the implosion phase changes into an explosion phase. The dynamics 
of the star in this phase then follows an unwinding motion from the hub out- 
wards, in a spiral fashion. This path is described by the second part of the 
Cornu spiral solution, in the third quadrant of the X-Y plane. As the curve 
passes through the origin of the X-Y plane, the explosion changes to implosion, 
and the winding up motion of the spiral then starts to repeat itself. In this way, 
the implosion-explosion behavior of the galaxy of stars continues to evolve 
harmonically. 

5. Conclusions 

Summing up, a new feature in cosmology that comes from a quaternion 
representation of general relativity theory is the appearance of phase factors 
depending on the time coordiaate, and in consequence the appearance of 
extra terms in the geodesic equation to describe the motion of a star. Assum- 
ing that (1) the velocity of a star is small compared with the velocity of light, 
(2) the geometrical terms Fg~c '~  ~ in the geodesic equation are time indepen- 
dent at the beginning of any particular exploding phase of the matter of the 
universe, and in the regions of space near the observed horizon of the universe 
relative to our position, and (3) the boundary conditions hold that are con- 
sistent with a periodic explosion-implosion dynamics of an oscillating universe 
cosmology, the Hubble law was found to follow from the equations of motion 
of the star, as a "test body" acted upon by the rest of the matter of the uni- 
verse. The Hubble constant, which in this theory is found to depend on field 
variables of the quaternion representation of general relativity theory, is time 
independent within the approximations used, though dependent on the 
spatial coordinates. The result implies that possibly the "peculiar" data on 
quasars are not necessarily due to their anomalous intrinsic properties. They 
may rather be due to the fact that these particular stellar objects are being 
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observed over a very large distance from us, and the curvature of space-time 
then effectively alters the measured linear velocity-distance relation. 

The spiral structure of galaxies is spelled out in terms of the space depen- 
dence of the metrical field variables of  this theory. The details of the spiral 
structures, such as the amplitudes of the spiral arms, must await a more 
explicit form for the solutions of the field equations. Generally, however, 
within the approximations used, the shape of these paths within the host 
galaxy is that of the "Cornu spiral," described mathematically by the 
Fresnel integrals. 

Of course, not all of the galaxies of the night sky are spiral and planar, with 
a dense hub in the center, as our own galaxy is. Nor are all of the galaxies even 
planar. According to the theory presented in this paper, the shapes of the 
planar elliptical galaxies, and those that are not planar, might follow from a 
breakdown of the boundary conditions and the approximations that were 
used in this analysis. But, at the present stage, it is felt that the prediction of 
.the spiral shape of some of the galaxies, and the Hubble law, f rom equations 
o f  motion associated with the maximally general representation of general 
relativity theory- tha t  is, the quaternion field representation-does lend further 
support to the theory of general relativity itself. The analysis also supports the 
oscillating universe cosmology, and it implies from the predictions of the spi- 
ral shapes of rotating galaxies that the constituent galaxies of the universe are 
similarly in a steady state of periodic exploding and imploding matter, though 
on a different time scale than the universe as a whole. 

The latter conclusion then leads to one further speculation-that the unusu- 
"ally large quantities of energy that have been associated with anomalous stellar 
objects, and with possible sources of gravitational radiation (Weber, 1969), 
may in fact relate to the exploding-imploding oscillations of entire galaxies. 
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